Einstein College at Yeshiva University Gets Grant To Develop World’s Smallest Cancer Detection Device

0
>>Follow Matzav On Whatsapp!<<

albert-einstein-college-of-medicine-of-yeshiva-universityResearchers at the College of Nanoscale Science and Engineering (“CNSE”) of the University at Albany and Albert Einstein College of Medicine of Yeshiva University will collaborate on a $2 million grant from the National Cancer Institute to study tumor “microenvironments,” where tumors interact with surrounding tissues, cells and chemicals in ways that all too often encourage cancer cells to invade other areas of the body in the process known as metastasis.

With the new NCI grant, researchers at CNSE, led by Dr. James Castracane, professor and head of the Biosciences Constellation, will team up with their Einstein colleagues to develop a next-generation microchip that, when placed in a cancerous mass, can gather information on the presence of metastatic cells that would demand more aggressive cancer therapy.

“By integrating cutting-edge science and engineering at the nanoscale level with vital biomedical research, it is our intent to provide deeper understanding of the causes of cancer metastasis and migration – knowledge that is of critical importance in the treatment and, ultimately, prevention of cancer,” said Castracane.

“The NCI has placed a very high priority on understanding the ‘dialogue’ in tumor microenvironments that appears crucial for causing cancers to spread,” said Dr. John Condeelis, co-chair of anatomy and structural biology at Einstein. “This five-year Tumor Microenvironment Network grant will allow Einstein to influence the way research is carried out in this emerging and important field.”

Dr. Condeelis is the principal investigator of the newly funded program; Dr. Castracane is serving as co-principal investigator.

Dr. Condeelis has used the multiphoton confocal microscope to directly observe cellular interactions in the tumor microenvironment of live animal models of breast cancer. By placing an artificial blood vessel near tumors, he was able to collect motile cancer cells for study and to predict – by the presence or absence of certain signaling molecules – whether the tumor cells have the potential to metastasize.

The Einstein and Albany researchers will use nanotechnology, which involves studying and working with material on the molecular level, to design a “microchip” version of the artificial blood vessel that Dr. Condeelis has used successfully in animals.

The microchip will be assembled from nanoscale components so that several different functions can be carried out within a very small package. The goal: to implant these tiny microchips – just two to three cells in diameter and a tenth of a millimeter in length – in human tumors, where they would remain for days or weeks. The chips would report remotely to scanners that would “read” them on the nature of the cells that infiltrate them – in particular, on whether metastatic cells are present that would call for more aggressive cancer therapy.

In 2005, Einstein formed an alliance with UAlbany’s CNSE to advance education and research in the rapidly growing fields of nanobiotechnology and nanomedicine. “This NCI grant marks a true milestone for this partnership, which combines the unique expertise and resources of both institutions to apply nanoscale principles to detect diseases and develop treatments for them,” says Ira M. Millstein, chairman of the Einstein Board of Overseers. “We are committed to ensuring that the Einstein-Albany alliance will lead the nation in efforts to use nanotechnology to improve peoples’ lives.”

{Medical News Today/Matzav.com Newscenter}


LEAVE A REPLY

Please enter your comment!
Please enter your name here